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ABSTRACT—This paper describes the Remote Agent flight 
experiment for spacecraft commanding and control. In the 
Remote Agent approach, the operational rules and 
constraints are encoded in the flight software. The software 
may be considered to be an autonomous “remote agent”  of 
the spacecraft operators in the sense that the operators rely 
on the agent to achieve particular goals.   

The experiment will be executed during the flight of 
NASA’s Deep Space One technology validation mission.  
During the experiment, the spacecraft will not be given the 
usual detailed sequence of commands to execute.  Instead, 
the spacecraft will be given a list of goals to achieve during 
the experiment.  In flight, the Remote Agent flight software 
will generate a plan to accomplish the goals and then 
execute the plan in a robust manner while keeping track of 
how well the plan is being accomplished.  During plan 
execution, the Remote Agent stays on the lookout for any 
hardware faults that might require recovery actions or 
replanning.  

In addition to describing the design of the remote agent, this 
paper discusses technology-insertion challenges and the 
approach used in the Remote Agent approach to address 
these challenges. 

The experiment integrates several spacecraft autonomy 
technologies developed at NASA Ames and the Jet 
Propulsion Laboratory: on-board planning, a robust multi-
threaded executive, and model-based failure diagnosis and 
recovery. 

1. INTRODUCTION 

Robotic spacecraft are making it possible to explore the 
other planets and understand the dynamics, composition, and 
history of the bodies that make up our solar system. These 
spacecraft enable us to extend our presence into space at a 
fraction of the cost and risk associated with human 
exploration. They also pave the way for human exploration. 

Where human exploration is desired, robotic precursors can 
help identify and map candidate landing sites, find 
resources, and demonstrate experimental technologies. 

Current spacecraft control technology relies heavily on a 
relatively large and highly skilled mission operations team 
that generates detailed time-ordered sequences of commands 
or macros to step the spacecraft through each desired 
activity.  Each sequence is carefully constructed in such a 
way as to ensure that all known operational constraints are 
satisfied.  The autonomy of the spacecraft is limited. 

This paper describes a flight experiment which will 
demonstrate the Remote Agent approach to spacecraft 
commanding and control. In the Remote Agent approach, 
the operational rules and constraints are encoded in the 
flight software and the software may be considered to be an 
autonomous “remote agent”  of the spacecraft operators in 
the sense that the operators rely on the agent to achieve 
particular goals.  The operators do not know the exact 
conditions on the spacecraft, so they do not tell the agent 
exactly what to do at each instant of time. They do, however, 
tell the agent exactly which goals to achieve in a period of 
time as well as how and when to report in. 

The Remote Agent (RA) is formed by the integration of 
three separate technologies: an on-board planner-scheduler, 
a robust multi-threaded executive, and a model-based fault 
diagnosis and recovery system. 

This Remote Agent approach is being designed into the New 
Millennium Program’s Deep Space One (DS1) mission as an 
experiment.  The spacecraft (see Figure 1) will fly by an 
asteroid, Mars, and a comet.  

The New Millennium Program is designed to validate high-
payoff, cutting-edge technologies to enable those 
technologies to become more broadly available for use on 
other NASA programs.  The experiment is slated to be 
exercised in October of 1998. 



 

  

 

Figure 1. DS1 Spacecraft 

Section 2 discusses the benefits to the spacecraft community 
from increased spacecraft autonomy and the motivation for 
this work. Section 3 outlines some of the challenges to 
acceptance of spacecraft autonomy and Section 4 introduces 
the Remote Agent design approach and architecture. Section 
5 covers the particulars of the DS1 Remote Agent 
experiment.  Section 6 discusses the functioning of each of 
the three technology components of the Remote Agent. 
Section 7 describes how the Remote Agent software is 
integrated into the separately-developed Deep Space One 
flight software. Section 8 describes how the Remote Agent 
experiment is tested prior to flight. Section 9 summarizes the 
paper and describes plans for future Remote Agent 
development. 

2. NEED FOR AUTONOMY ON SPACECRAFT 

The desire to increase the level of spacecraft autonomy 
comes from at least three separate objectives of spacecraft 
customers: taking good advantage of science opportunities, 
reducing spacecraft operations costs, and handling 
uncertainty—including ensuring robust operation in the 
presence of faults. 

Taking Advantage of Science Opportunities 

Our science customers would like the spacecraft to be able 
to modify its sequence of actions more quickly based on 
late-breaking information available on the spacecraft. 

For example, an ultraviolet  spectrometer on a comet flyby 
mission might identify a region of particular interest for 
intense scrutiny.  With current technology, scientists have to 
make do with whatever pre-planned sequence of 
observations has been stored on-board and cannot 
reprogram any of those to examine more closely the newly 
identified region of interest.  With a future RA, plans may be 
revised based on this new information hours or minutes 
before flyby. With ground-based control, a turnaround time 
of hours is impractical and a turnaround time of minutes is 
physically impossible due to the speed of light.  See Figure 
2. 
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Figure 2. Fast replanning based on new information 

Similarly, on the Mars Pathfinder mission, the science team 
requested the ability for the meteorology instrument, when it 
senses that a dust devil is passing, to tell the camera to take 
unplanned images aimed at the departing dust devil.  It is 
difficult to see how this capability could coexist with time-
tagged command sequences for the imaging planned for the 
rest of the day.   

Reducing Spacecraft Operations Costs 

Our funding sources are insisting that means be found to 
reduce operations costs.  A fixed amount of funding is 
available from NASA for solar system exploration including 
spacecraft development and operations.  When operations 
costs are reduced, more resources become available for 
developing a wider variety of interesting solar system 
exploration missions.  Development of detailed spacecraft 
sequences accounts for the largest expenditure in operations 
budgets.   

By commanding spacecraft at a higher level of abstraction, 
much of the sequence development task becomes the 
responsibility of the flight software, reducing ground 
operations costs.  Some of the savings come from a change 
in how we think about operations planning.  The old 
approach was that all spacecraft activities needed to be 
predicted and approved by ground controllers.  The new 
thinking is that the ground controllers do not (always) need 
to know the low-level details of spacecraft activities but only 
the capabilities of the spacecraft and the high-level goals.   

Ensuring Robust Operation in the presence of uncertainty 

Our customers still require high reliability and the ability to 
respond to problems in flight.  For existing spacecraft, the 
fault protection system often represents the most 
autonomous system on-board.  Robust operation is desired 
in the presence of hard faults, degraded performance, and 
operator errors. 

Traditional spacecraft, even in conservative designs, 
generally provide some minimal level of fault protection out 
of necessity.  Otherwise, any major problem with attitude 
control, power, or antennas could by itself prevent ground 
controllers from diagnosing or correcting the problem.  The 
Remote Agent is able to go a step further:  after recovering 
from a fault, it can continue the mission, even if it involves 
replanning for degraded capability. 



 

  

Another advantage of the Remote Agent derives from the 
nominal and failure modeling used by the fault diagnosis 
engine.  For hard-coded fault protection designs, the domain 
knowledge is implicit rather than explicit.  This means that 
we rely on the fault protection algorithm developers to 
understand the system, and abstract from that understanding 
a design for which symptoms to look for and what responses 
to take when they show up. In contrast, with model-based 
fault diagnosis, the fault protection software engineers 
explicitly model how the system behaves in nominal and 
failure cases.  Fault diagnosis then becomes a search for 
likely diagnoses given observed symptoms.  Since the 
spacecraft designers understand the details of the system 
behavior, there is an advantage to having them encode their 
knowledge explicitly at design time. 

3. AUTONOMY TECHNOLOGY INSERTION 

REQUIREMENTS 

It is not enough to build a better mousetrap; it won’ t catch 
any mice unless it gets used.  There are similar issues for the 
insertion of higher levels of autonomy into spacecraft 
designs.  The design must be developed with the needs of 
two sets of customers in mind: the spacecraft test engineers 
and the mission controllers. 

Spacecraft Test 

Conversations with spacecraft test engineers have raised a 
number of concerns that must be addressed in any 
autonomous system design process. 

1. Determinism and non-determinism: Is the system non-
deterministic? How do we test the system if we don’ t control 
its initial conditions in flight? 

For the current Remote Agent design, the system is  
deterministic to the extent that the same set of inputs will 
yield the same outputs each time. The context for this 
question, however, is that we cannot predict the exact set of 
commands that the Remote Agent will use to achieve a set of 
goals far in the future since we cannot predict exactly what 
the spacecraft state will be at that time.  This situation is 
common in another context, that of attitude control systems.  
We don’ t know exactly when  a particular thruster will fire, 
but we do know that the system will fire thrusters as needed 
to achieve the higher level goal of holding the commanded 
attitude.  

So how do we test such a system? For an attitude control 
system, we develop multiple scenarios and verify that the 
pointing error meets requirements in all situations.  We also 
check that the propellant usage is acceptable while the 
requirements are being met. Continuing the analogy with an 
attitude control system, we develop multiple scenarios and 
test whether the high level goals are met, and analyze 
whether the resources required to do so were acceptable. 

2. Earlier system behavior definition: The flight system is 
more complex, so more testing is needed earlier and the 
desired behavior needs to be defined long before launch. 

Some additional techniques are required.  These are 
described in the testing section of this paper. 

The concern about early definition may be valid depending 
on how much of the spacecraft behavior we choose to build 
into the flight software before launch.  With the traditional 
sequence development approach, many sequences are 
developed after launch, so there is no opportunity to observe 
full end-to-end behavior in a test environment. With an on-
board planner, we now have the opportunity to design and 
test the behavior before hand.  It should be pointed out that 
this is an opportunity and not a requirement.  For example, 
the Project may choose to delay final design of flyby 
scenarios until after launch.  In this case, we should expect 
to update the on-board planner and mission goals at the time 
that the scenario is finalized and this may be after launch. 

3. Test Plan coverage:  How do we develop a test plan that 
assures adequate coverage? How should test cases be 
devised? What needs to be tested in system test? The core 
engines underlying the Remote Agent are unfamiliar to 
spacecraft test teams and could require large effort to test. 

First, a distinction should be made between the Remote 
Agent infrastructure or engines and the mission-unique 
models.  The Remote Agent infrastructure will be 
extensively analyzed and tested in pre-integration unit tests.  
At the system test level, the focus should be on whether the 
behavior of the Remote Agent meets the goals and 
constraints set for it. 

As with any complex system, the test plan needs to include 
nominal cases, failure cases, and cases that test the 
boundaries of the system so that the operators learn where it 
will break.  The planner can be challenged by overloading 
the number of tasks to be done in a short time.  The 
executive may be challenged with a large number of tasks 
requiring immediate response, and fault protection may be 
challenged by examining its response to multiple, closely 
spaced failures. Planner unit tests will include examples 
using each constraint.  Executive unit tests should explore 
each approach that might be used to achieve a task and fault 
protection tests still depend on devious testers to invent 
challenging scenarios.  

A large variety of tests seeking extreme and boundary 
condition behavior is indicated when testing any complex 
software system. 

A major advantage of the Remote Agent approach is that it 
depends on declarative hardware knowledge; in other 
approaches the hardware knowledge is captured Only 
implicitly. Explicit models come in handy at review time 
because the software engineer can sit with the hardware 
expert and review the declarative model of the hardware.  
This helps reduce errors in understanding between the 
hardware and software engineers. 



 

  

Mission Operations  

Mission operators or controllers have clearly expressed a 
number of requirements or desires with respect to fielding 
autonomous systems.  These include: 

1. Low level commanding: Operators should be able to have 
access to low-level control of spacecraft hardware 
unimpeded by the autonomous system. 

As this requirement became clear, the Remote Agent design 
was modified to allow low-level hardware command 
access—potentially bypassing some autonomous capabilities 
and safeguards. Unless the Remote Agent is instructed in  
the context and goals of these low level commands, they 
need to be used carefully and when the spacecraft is in a low 
activity quiescent mode. 

2. Ground override authority: An ability to command the 
spacecraft to revert to a low-level of autonomy mode if the 
controllers decide that they want to disable the autonomous 
feature. 

This requirement is met on DS1. 

3. Migration of autonomy capabilities: A sequence that 
allows demonstration of autonomous capabilities as ground 
system capabilities prior to fielding them on the spacecraft 
as on-board capabilities. 

The Remote Agent experiment is being designed to meet 
this requirement by first engaging the executive as just 
another basic sequence engine, then allowing Remote Agent 
to execute a pre-computed plan sent from the ground, and 
finally enabling the on board planner, bringing the full DS1 
Remote Agent level of autonomy to bear. 

4. Behavior Prediction: The ability to predict (at some 
level) what the behavior of the spacecraft will be when the 
spacecraft begins to execute the on-board-generated plan. 

There will be a copy of the on-board planner built into the 
ground system.  This copy will be used to generate 
experience and rules of thumb as to what sets of goals are 
easily achievable and what sets are difficult to achieve for 
the on-board system based on these rules of thumb. The 
operators will define the goals for each mission phase and 
since the Remote Agent is closing the loop around these 
goals, the best prediction of spacecraft behavior is that the 
goals will be achieved on schedule. 

The Remote Agent has been designed to support multi-level 
commanding and monitoring in order to enable ground 
controllers to adjust the level of autonomy they desire across 
different activities or mission phases [1]. 

4. REMOTE AGENT DESIGN APPROACH AND 

ARCHITECTURE 

.  The New Millennium Autonomy Architecture rapid 
Prototype (NewMaap) effort [2] identified the key 
contributing technologies: on-board planning and 

replanning, multi-threaded smart executive, and model-
based failure diagnosis and repair.  In NewMaap, we learned 
how to take advantages of the strengths and weaknesses of 
these three technologies and merge them into a powerful 
system. After successful completion of the prototype, the 
RA was selected as one of the NMP technologies for DS1.  
It will be uplinked to the spacecraft as a software 
modification and demonstrated as an experiment. 

Fig. 3 shows the communications architecture for the 
Remote Agent’s interaction with the rest of the spacecraft 
flight software.  Note that all interaction with the hardware 
is the responsibility of the real-time software.  The RA is 
layered on top of that software, but also gathers information 
from all levels to support fault diagnosis. 
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Figure 3. Remote Agent Communication Architecture 

Several spacecraft commanding styles are possible.  Goal-
oriented commanding is the intended operating mode for 
most of an RA mission; provision has been made for 
updating the goals in flight. In a typical planning cycle, the 
executive is executing a plan and gets to an activity that can 
be interpreted as "time to plan the next segment."  The 
executive calls the planner with the current and projected 
spacecraft state including the health of all devices.  The 
planner/scheduler generates a new plan using priorities, 
heuristics, and domain models including system constraints. 
The planner sends this plan to an executive that creates an 
agenda of plan items and executes the agenda. Plan 
execution robustness is added by making use of the Model-
based Mode Identification and Reconfiguration (MIR) 
system. The MIR system includes monitors, mode 
identification for nominal and failure conditions, 
communication of state to the executive and proposals of 
reconfiguration actions to take in the event of failures. 

Each of the components of the Remote Agent will be 
described in more detail in Section 6, but first the Remote 
Agent experiment for  the Deep Space One mission will be 
described in more detail. 

5. THE DEEP SPACE ONE REMOTE AGENT 

EXPERIMENT 

The Remote Agent eXperiment (RAX) for Deep Space One 
is a demonstration of RA capabilities. Since an alternate 
method of control is used for most of the mission, RAX is 



 

  

focused on demonstrating specific autonomy capabilities 
rather than controlling all aspects of spacecraft behavior. 
The Remote Agent controls the following spacecraft 
hardware and software: the camera for use in autonomous 
navigation, the Solar Electric Propulsion (SEP) subsystem 
for trajectory adjustment, the attitude control system for  
turns and attitude hold, the navigation system for 
determining how the actual trajectory is deviating from the 
reference trajectory and what SEP thrusting profile is needed 
to stay on the reference trajectory, the Power Amplification 
and Switching Module (PASM), for use in demonstrating 
fault protection capabilities. 

Four failure modes are covered by RAX.  These are: 

F1. Power bus status switch failure 

F2. Camera power stuck on 

F3. Hardware device not communicating over bus to flight 
computer 

F4. Thruster stuck closed 

Mission Scenario 

The Remote Agent experiment is executed in two phases, a 
12 hour Phase One followed a couple of weeks later by a 6 
day Phase Two. 

In Phase One, we start slowly by first demonstrating the 
executive operating in the manner of a low level sequencer 
by accepting commands to turn devices on and off.  Next, a 
“scripted”  mode is demonstrated with execution of plans 
uplinked from the ground. The main demonstration here will 
be commanding the spacecraft to go to and stay in a known, 
safe, standby mode and then take a series of optical 
navigation (OpNav) images.  In addition, Failure mode F1 
will be demonstrated by injecting power bus switch status 
readings indicating that a power bus is unexpectedly off.  
The fault diagnostic system will examine this information 
along with other information that indicates that devices on 
the bus are still communicating normally with the flight 
computer and conclude that the failure is in the switch status 
measurement and not in the bus itself.  No action will result.  
No planning or SEP thrusting are attempted in Phase One. 

In Phase Two, we also start by demonstrating low level 
commanding, and then initiate on-board planning.  Based on 
the spacecraft initial state and the uplinked goals, the 
planner will generate a three day plan including imaging for 
optical navigation, thrusting to stay on the reference 
trajectory, and simulated injection of faults to test out 
failures F2, F3, and F4. First the camera power stuck on 
failure (F2) is injected.  When the executive is unable to turn 
off the camera when the plan so dictates, the executive 
realizes that the current plan should be aborted and  
replanning is indicated. This might be necessary, for 
example, because the initial plan’s assumptions on power 
consumption are incorrect with the camera on when it 
should be off.  The plan is declared failed, the spacecraft is 
sent to a standby mode while the planner is requested to 
replan based on the new information that the camera power 
switch is stuck on. When the new plan is received by the 

executive, execution resumes including navigation and SEP 
thrusting.  Near the end of the three day plan, the planner is 
called to generate the plan for the next three days.  This plan 
includes navigation and SEP thrusting as before.  It also 
includes two simulated faults.  First, a failure of a hardware 
device to communicate is injected (F3); the proper recovery 
is to reset the device without interrupting the plan.  Next, a  
thruster stuck closed failure (F4) is simulated by injecting an 
attitude control error monitor above threshold. The correct 
response is to switch control modes so that the failure is 
mitigated. 

RA Capabilities Demonstrated with DS1 RAX 

The above scenario has been designed to demonstrate that 
the DS1 Remote Agent meets the following autonomy 
technology goals: 

• Allow low-level command access to hardware 

• Achieve goal oriented commanding 

• Generate plans based on goals and current spacecraft 
state expectations 

• Determine the health state of hardware modules 

• Demonstrate model-based failure detection, isolation, 
and recovery 

• Coordinate hardware states and software modes 

• Replan after failure given new context 

6. RA COMPONENTS 

The major components of the Remote Agent are discussed 
below. 

Planner/Scheduler 

The highest level commanding interface to the Remote 
Agent is provided the Planner/Scheduler (PS). PS maintains 
a database of goals for the mission, the mission profile,  that 
spans a very long time horizon, potentially the duration of 
the entire mission. Over the duration of a mission PS is 
iteratively invoked by the executive to return a synchronized 
network of high-level activities, the plan, for each short-term 
scheduling horizon into which the mission profile is 
partitioned. Typically each short-term horizon covers 
several days. When PS receives a request from EXEC, it 
identifies the next scheduling horizon, retrieves from the 
mission profile the goals relevant to that horizon, merges in 
the expected initial spacecraft state provided by EXEC into a 
incomplete, initial plan and generates a fully populated plan. 
PS sends that plan to EXEC for execution. 

For RAX, Phase Two, the mission profile will cover 6 days 
and contain two scheduling horizons of three days each. 
RAX allows the specification of two kind of goals. One 
specifies the frequency and duration of the “optical 
navigation windows” , the time during which the spacecraft 
is requested to take a set of asteroid pictures to be used for 
orbit determination by the on-board  Navigator. The second 
type of goal specifies a “mini-sequence” , i.e., a set of lower-
level commands that EXEC will issue to the real-time 
software, and requirements to activate the mini-sequence 



 

  

with certain synchronization constraints with respect to other 
planned activities. A new plan will be requested of MM/PS 
in two situations: 

• nominal operations: in this case EXEC reaches the 
activity Pl anner _Pl an_Next _Hor i zon toward 
the end of the current scheduling horizon. EXEC will 
issue a request for a new plan. This request will define 
the new initial state as the expected final state from the 
plan currently in execution. This will allow seamless 
patching of the old and new schedule without any 
interruption of execution. 

• fault response: if the fault protection system detects an 
anomaly that will impact the executability of future 
tasks in the plan, the EXEC will request a new plan to 
resume normal operations after having put the 
spacecraft in a safe standby mode. In this case the initial 
state describes the standby tasks or holding states for 
each subsystem modeled in the plan and health 
information describing possibly degraded modes for 
failed subsystems. 

Notice that from the point of view of PS both the nominal 
and fault response case are handled exactly in the same way. 

Ground controllers can add, modify, or delete goals from the 
mission profile by explicitly issuing a command to the 
mission profile. For example, in a mission in which the 
spacecraft communicated to Earth through the Deep Space 
Network, the final communication schedule allocated to the 
mission may become available only a few weeks ahead of 
time and it is possible that a schedule may change with a 
short notice (e.g., within a week). Ground controllers will 
need to communicate both of these situation to the 
spacecraft by issuing appropriate edit commands to modify 
the mission profile.  

PS provides the core of the high-level commanding 
capability of RAX. Given an initial, incomplete plan 
containing the initial spacecraft state and goals, PS generates 
a set of synchronized high-level activities that, once 
executed, will achieve the goals. PS presents several features 
that distinguish it from other Artificial Intelligence and 
Operations Research approaches to the problem. For 
example, in the spacecraft domain planning and scheduling 
aspects of the problem need to be tightly integrated. The 
planner needs to recursively select and schedule appropriate 
activities to achieve mission goals and any other subgoals 
generated by these activities. It also needs to synchronize 
activities and allocate global resources over time (e.g., 
power and data storage capacity). Subgoals may also be 
generated due to limited availability of resources over time. 
For example, it may be preferable to keep scientific 
instruments on as long as possible (to maximize the amount 
of science gathered). However limited power availability 
may force a temporary instrument shut-down when other 
more mission-critical subsystems need to be functioning. In 
this case the allocation of power to critical subsystems (the 
main result of a scheduling step) generates the subgoal 
“ instrument must be off”   (which requires the application of 

a planning step). The PS is able to tune the order in which 
decisions are made to the characteristics of the domain by 
considering the consequences of action planning and 
resource scheduling simultaneously.  This helps keep the 
search complexity under control.   

This is a significant difference with respect to classical 
approaches both in Artificial Intelligence and Operations 
Research where action planning and resource scheduling are 
typically addressed in two sequential problem solving 
stages, often by distinct software systems. Another important 
distinction between the Remote Agent PS and other classical 
approaches to planning is that besides activities, the planner 
also “schedules”  the occurrence of states and conditions. 
Such states and conditions may need to be monitored to 
ensure that, for example, the spacecraft is vibrationally quiet 
when high stability pointing is required. These states can 
also consume resources and have finite durations and, 
therefore, have very similar characteristics to other activities 
in the plan. PS  explicitly acknowledges this similarity by 
using a unifying conceptual primitive, the token, to 
represent both actions and states that occur over time 
intervals of finite extension. 

PS consists of a heuristic search engine, the Incremental 
Refinement Scheduler (IRS) that operates in the space of 
incomplete or partial plan [6]. Since the plans explicitly 
represent time in a numeric (or metric) fashion, the planner 
makes use of a temporal database.  As with most causal 
planners, PS begins with an incomplete plan and attempts to 
expand it into a complete plan by posting additional 
constraints in the database.  These constraints originate from 
the goals and from constraint templates stored in a model of 
the spacecraft. The temporal database and the facilities for 
defining and accessing model information during search are 
provided by the HSTS system. For more details on PS and 
the HSTS system see [3] and [4]. Figure 4 describes the PS 
architecture. 
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Figure 4. Planner /Scheduler  Architecture 

The  coverage of the RAX model is described in Table 1. 
Appendix B gives a detailed description of the timelines and 
tokens needed by PS to handle the propulsion and thrust 
subsystems of the spacecraft. 

 



 

  

Table 1 Summary of Planner  Models for  RA Exper iment 

Subsystem State 
Variables 

Value 
Types 

Compat-
ibilities 

Comments 

MICAS Executable: 2 

Health: 1 

7 14 Models the health, mode and activity of the MICAS imaging camera. 
RAX demonstrates fault injection and recovery for this device as part 
of the 6 day scenario. 

Navigation Goal: 1 

Executable: 1 

Internal: 1 

5 6 To schedule Orbit determination (OD) based on picture taking 
activity.  

Propulsion 
& Thrust 

Goal: 2 

Executable: 1 

Internal: 1 

9 12 Based on thrust schedule generated by the NAV module, the planner 
generates plans to precisely activate the IPS in specific intervals based 
on constraints in the domain model and is the most complex set of 
timelines and subsystem controlled by the planner (see Appendix B 
for details) 

Attitude Executable: 1 

Health: 1 

4 4 Enables the planner to schedule slews between constant pointing 
attitudes when the spacecraft maintains its panels towards the sun. The 
targets of the constant pointing attitudes are imaging targets, Earth 
(for communication) and thrust direction ( for IPS thrusting.) 

Power 
Manage-
ment 

Goal: 1 

Internal: 1 

2 1 Allows the planner to ensure that adequate power is available when 
scheduling numerous activities simultaneously. 

Executive Goal: 1 

Executable: 1 

2 7 Allows modeling of low level sequences bypassing planner models 
giving Mission Ops the ability to run in sequencing mode with the 
RA. 

Planner Executable: 1 2 2 To schedule when the Executive can request the plan for the next 
horizon. 

Mission Goal: 1 2 2 Allows the Mission Manager and the planner to coordinate activities 
based on a series of scheduling horizons updatable by Mission Ops for 
the entire mission 

Each subsystem in the model is represented in  the PS 
database. Each subsystem has a set of dynamic state 
variables whose value is tracked over time. Each dynamic 
state variable can assume one or more values. A token is 
associated with a value of a state variable occurring over a 
finite time interval. Each value has one or more associated 
compatibilities, i.e., patterns of constraints between tokens. 
A legal plan will contain a token of a given value only if all 
temporal constraints in its compatibilities are satisfied by 
other tokens in the plan. An example the atomic temporal 
constraints that belong to a compatibility can be expressed 
in English as “While the spacecraft is taking asteroid 
pictures requested by navigation, no ion thrusting is 
allowed” .  

In Table 1 we identify four distinct kinds of state variables. 
A goal timeline will contain the sequence of high-level goals 
that the spacecraft can satisfy (e.g., the Navi gat e goal 
described before). Goal timelines can be filled either by 
ground operators or by on-board planning experts seen by 
PS as goal generators. For example, in order to generate the 
portion of the plan that commands the IPS engine, PS 
interrogates NAV which returns two types of goals: the total 
accumulated time for the scheduling horizon and the 

thrusting profile to be followed. These two types of 
information are laid down on separate goal timelines. 
Expected device health information over time is tracked by 
health timelines. The expected profile is communicated by 
EXEC to PS in the initial spacecraft state. EXEC can 
communicate that the health of a device has changed even if 
no fault has occurred. For example, in a previous fault 
situation ground controllers may have decided that the IPS 
engine is not trustworthy and therefore should not be 
considered operational until further tests have been run. PS 
will therefore generate plans that do not involve using the 
engine. They may decide to run some tests by posting 
appropriate goals in the mission profile and therefore not 
breaking nominal plan execution. After the tests they may 
decide that the IPS engine is trustworthy after all and may 
send a message to EXEC that it is again OK to thrust. EXEC 
will communicate this to PS through the health timeline in 
the next scheduling horizon, without needing to interrupt 
regular plan execution and put the spacecraft in standby 
mode.  

Another kind of state variable is an internal timeline. These 
are only used by the planner to internally organize goal 
dependencies and subgoaling. Finally, an executable state 



 

  

variable corresponds to tasks that will be actually tracked 
and executed by EXEC.  

The RAX PS treats all timelines and tokens within a simple, 
unified search algorithm. This has advantages. The ground 
team could force certain behaviors of the spacecraft by 
including in the mission profile explicit tokens on 
executable timelines. The additional tokens will be treated 
by PS as goals, will be checked against the internal PS 
model and missing supporting tasks will be automatically 
expanded to create a overall consistent plan. This will 
greatly facilitate the work of the ground team.  

Table 2 gives quantitative information regarding the three 
plans that PS is expected to generate on board during the 6 
day experiment. The tokens and constraints columns contain 
the number of tokens and pairwise temporal constraints 
(e.g., “ token A starts between 1 and 2 minutes after token 
B”) in the plan respectively. The first CPU time column 
reports the actual measured run time of PS on a 
PowerPC/VxWorks flight hardware testbed. The next 
column reports the estimated time to generate the same plans 
on the actual RAD6000 flight processor for DS1. The scale 
up factor of 40 is due to the lower speed of the RAD6000 
with respect to the PowerPC (about one order of magnitude) 
and the allocation of only 25% of the CPU to the PS 
process.  

Table 2. PS Metr ics for  Per formance 

Scenario tokens con-
straints 

CPU time on 
PPC testbed 
(mm:ss) 

Est. CPU 
time on 
RAD6000 
(hh:mm:ss) 

First 
horizon 

105 141 7:13 4:48:00 

Replan in 
first 
horizon 

69 66 4:01 2:40:00 

Second 
horizon 

126 192 13:49 9:12:00 

 

Executive 

The Smart Executive (EXEC) is a reactive plan execution 
system with responsibilities for coordinating execution-time 
activity.  EXEC's functions include plan execution, task 
expansion, hardware reconfiguration, runtime resource 
management, plan monitoring, and event management.  The 
executive invokes the planner and MIR to help it perform 
these functions.  The executive also controls the lower-level 
software by setting its modes, supplying parameters and by 
responding to monitored events.  

Task Expansion EXEC provides a rich procedural language, 
ESL [5], in which we define how complex activities should 
be broken up into simpler ones.  A procedure can specify 
multiple alternate methods for goal achievement to increase 
robustness.  If a selected method fails, EXEC will try any other 
methods applicable in the current context.   

Resource Management As a multi-threaded system, EXEC 
works on multiple activities simultaneously.  These activities 
may compete for system resources within the constraints not 
already resolved by ground or the planner.  EXEC manages 
abstract resources by monitoring resource availability and 
usage, allocating resources to tasks when available, making 
tasks wait until their resources are available, and suspending 
or aborting tasks if resources become unavailable due to 
failures (such as a device breaking).  See Ref. [8] for a more 
detailed discussion.  

RAX Startup  Upon startup, EXEC asks MIR to describe the 
current spacecraft configuration.  Then EXEC puts the spacecraft 
into standby mode. Standby mode is a safe mode that 
guarantees sufficient power and ground communications as 
well as a thermally benign state. Once standby mode has 
been achieved, EXEC then begins its normal operational 
cycle.   

Operational Cycle The top-level operational cycle, 
including the planning loop, is described as follows.  EXEC 
requests a plan, by formulating a plan-request describing the 
current plan execution context. It later executes and 
monitors the generated plan.  EXEC executes a plan by 
decomposing high-level activities in the plan into primitive 
activities, which it then executes by sending out commands, 
usually to the real-time flight software (FSW).  EXEC 
determines whether its commanded activities succeeded 
based either on direct feedback from the recipient of the 
command or on inferences drawn by the Mode Identification 
(MI) component of MIR.  When some method to achieve a 
task fails, EXEC attempts to accomplish the task using an 
alternate method in that task’s definition or by invoking the 
Mode Reconfiguration (MR) component of MIR as a 
“recovery expert” .  If MR finds steps to repair the failing 
activity without interfering with other concurrent executing 
activities, EXEC performs those steps and then continues on 
with the original definition of the activity. If the EXEC is 
unable to execute or repair the current plan, it aborts the 
plan, cleans up all executing activities, and puts the 
controlled system into a stable safe state (called a “standby 
mode”).  In situations where continued operation is allowed, 
EXEC then requests a new plan from PS while maintaining 
this standby mode until the plan is received, and finally 
executes the new plan.  

 

Periodic Planning Cycle As shown in Figure 5, our 
approach separates an extensive, deliberative planning phase 
from the reactive execution phase, executing infrequently 
generated plans over extended time periods.  How far in 
advance the system should plan is constrained by several 
factors, including uncertainty about the results of execution. 
We use the term “planning horizon”  to describe the length of 
time into the future for which a plan is constructed.  In 
normal operations, the RA would plan a week ahead of time, 
and when it comes near the end of the current plan it would 
start working on the plan for the next horizon. Since the 
actual RAX experiment lasts for only one week, the planning 
horizon is set considerably shorter (3 days).   
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Figure 5 Executive Per iodic Planning Cycle 

We address the problem of generating initial states for the 
next planning round differently depending on the status of 
the currently-executing plan. Plans normally include the task 
of planning for the next horizon—i.e., the planner sets aside 
a good time for its own (next) computation.  At this point, 
the executive sends to the planner the remainder of the 
current plan in its entirety, with annotations for the decisions 
that were made so far in executing it. The current plan 
serves as its own prediction of the future at the level of 
abstraction required by the planner.  Thus, all the planner 
has to do is extend the plan to address the goals of the next 
planning horizon and return the result to the executive.  The 
executive must then merge the extended plan with its current 
representation of the existing plan.  The net result is that, 
from the executive’s perspective, executing multiple chained 
plans is virtually the same as executing one long plan.  This 
has the useful consequence that it enables the executive to 
engage in activities which span multiple planning horizons 
(such as a 3-month long ion engine burn) without 
interrupting them.  

In the event of plan failure, the executive enters standby 
mode prior to invoking the planner, from which it generates 
a description of the resulting state in the abstract language 
understood by the planner. Note that establishing standby 
modes following plan failure is a costly activity with respect 
to mission goals, as it causes us to interrupt the ongoing 
planned activities and lose important opportunities.  For 
example, a plan failure causing us to enter standby mode 
during the comet encounter would cause loss of all the 
encounter science, as there is no time to re-plan before the 
comet is out of sight.  Such concerns motivate a strong 
desire for plan robustness, in which the plans contain 
enough flexibility to continue execution of the plan under a 
wide variety of execution outcomes.  Executing a flexible 
plan is not easy, and draws on many capabilities of our 
“Smart”  EXEC.  

Plan Execution We now describe the plan execution 
capability of the executive in more detail.  The planner 
represents spacecraft activity as a set of concurrent 

subsystems.  Each independent component of a subsystem is 
conceptualized as a state variable, which can take on a series 
of different behaviors over time.  A plan consists of one 
timeline for each state variable.  Each timeline contains a 
sequence of constraints on the behavior of the state-variable.  
A token is a data structure which represents one part of a 
sequence on a timeline.  A token has information about the 
desired behavior throughout the duration of the token, and 
also flexible constraints on when the token can start and 
finish.  Lastly, the plan contains constraints to coordinate 
behavior across tokens on different timelines, called 
compatability constraints.  An example of a compatibility 
constraint is one which says that a “ take-picture”  token may 
only be executed within the window during which the 
corresponding “keep-pointing-at-target”  token is activated.  

The EXEC is a multi-threaded process that is capable of 
asynchronously executing activities in parallel.  EXEC has 
one thread for each timeline in a plan, and a procedure, 
called the token definition, for each type of token contained 
in the plan.  A token definition procedure contains a 
precondition that must be met before the activity can start, a 
postcondition that must be met before the activity can finish, 
and a body which describes how the procedure is actually 
executed.  To execute a plan, EXEC activates on the 
corresponding thread for each timeline the procedure 
corresponding to the first token on that timeline. EXEC 
tracks the status of all tokens in a data structure called an 
agenda. When a new token is able to start (because the 
previous token has finished and all other constraints are 
satisfied), EXEC terminates the previous token procedure 
and transitions to the next one.  For example, once the token 
for turning to a target has completed, the token for 
constantly pointing at the target can then be activated.  This 
enables the “ take-picture”  token on the camera timeline to 
be activated.  Only when the picture activity has finished 
will the EXEC terminate the “keep pointing at target”  token 
and transition to the token for turning to the next target 
attitude. The tokens executed by the RAX Executive are 
summarized in Appendix A. 

In more detail, plan execution is achieved through the 
following cycle, as shown in Figure 6:  

1. EXEC receives a new plan from the planner and updates 
the plan execution agenda.   

2. EXEC chooses a new task (usually arising from a plan-
level token) on the agenda that is ready for execution.  

3. EXEC decomposes the task into a series of sub-tasks 
based on task definition models and current execution 
context. Sub-tasks are recursively decomposed down to the 
level of primitives. EXEC invokes MIR as a recovery expert 
to achieve tasks that have failed. 

4. EXEC begins to execute a primitive task, for example by  
sending  a command to the FSW or waiting until a condition 
becomes true.  

 5. (Not shown) FSW processes the command by making a 
change in a software parameter or device state. The monitor 
for the affected  FSW component registers the change in 
low-level sensor data and sends MI a new abstracted value 



 

  

for the state of the affected components.  MI compares the 
command to the observations, infers the most likely actual 
nominal or failure mode of each component, and sends an 
update to EXEC describing the changes in any modes of 
interest to EXEC.  

6. EXEC compares the feedback from external events, such 
as the MI mode updates, to the conditions specified in its 
task models to determine whether the command executed 
successfully.  If so, it proceeds to take further steps to 
complete the high-level token. If the token is finished, 
EXEC updates its agenda and continues the cycle. 
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Figure 6. Executive Plan Execution Cycle 

Hard command execution failures may require the 
modification of the schedule in which case the executive will 
coordinate the actions needed to keep the spacecraft in a 
“standby mode”  and request the generation of a new 
schedule from the planner.  

Architecture-support timelines Most timelines (and hence 
tokens) represent the activity of spacecraft subsystems 
external to the RA. However, the RA also contains two 
timelines used to support architectural features.  First, the 
PLANNER-PROCESSING timeline describes the activity of 
the planner.  The PLAN-NEXT-HORIZON token for this 
timeline corresponds to a state in which the planner is 
generating a new plan.  EXEC executes this token by 
generating a plan request, sending it off to the planner, and 
then incorporating the new plan into the current execution 
context.   This supports the model of planning with multiple 
horizons described above.   The SCRIPT-NEXT-HORIZON 
token for this timeline is similar, except it directs EXEC to 
load and execute the plan defined in a file previously up-
linked from ground.  In this way ground controllers can also 
support back-to-back plans.  This also supports the use of 
the automated planner running in closed-loop fashion either 
from the ground or on-board the spacecraft, hence 
supporting easy migration of planning capability from 
human-based, to automatic ground-based, to autonomous 
on-board planning.   

Second, the EXEC-ACTIVITY timeline represents low-level 
activities that EXEC will perform that are lower-level than 
the tokens managed by the on-board planner.  To execute 
the EXEC-ACTIVITY token, which takes a filename as an 
argument, EXEC simply loads and executes the referenced 
file.  The file can contain arbitrary Lisp code, including any 
commands executable on the spacecraft.  This timeline can 
be used to run EXEC in a mode corresponding to a 
traditional sequencer, by sending up a plan that contains 
only a sequence of EXEC-ACTIVITY tokens, each with 
low-level commands defined in a file.  However, since this 
timeline runs concurrently with all the timelines defined for 
the planner, it also enables ground operators to require 
certain low-level activities to be inserted into whatever high-
level plan is generated autonomously.  EXEC also supports 
use of the EXEC-ACTIVITY procedure as an immediate 
function invocable by ground controllers.  Hence, even in 
the middle of an autonomous plan execution, or in standby 
mode, ground operators can ask EXEC to run arbitrary low-
level commands from a file and these can be tied to events 
rather than being linked to prespecified clock times. For the 
complete list of RAX timelines and tokens, see Appendix A. 

Summary of Executive Capabilities Demonstrated in RAX 
We now summarize how the  EXEC capabilities described 
above are demonstrated within the RAX scenarios. 

First, EXEC demonstrates the multi-level commanding, 
allowing ground operators to specify low-level commands to 
the hardware as part of a sequence, to generate plans from 
ground, or to request and execute plans generated on-board 
the spacecraft.  The low-level commanding and ground-
based planning are demonstrated in Phase One of the RAX 
experiment, in which a plan is up-linked from the ground 
which contains both high-level activities (like turning to a 
target) and low-level activities (using the EXEC-ACTIVITY 
tokens to simulate the injection of various faults, and to turn 
PASM on and off).  

Second, EXEC demonstrates plan request generation and 
execution.  This is demonstrated from a currently executing 
plan where nothing has changed (nominal scenario), from a 
currently executing plan where a device health token has 
been updated (following the MICAS health update), and 
from a standby mode.  As part of executing a plan phase 
two, EXEC demonstrates a number of important capabilities 
involved in token decomposition.    

• EXEC demonstrates context sensitive behavior in the 
management of the ion propulsion system.  Before 
executing a thrust command, EXEC requires that IPS is 
in standby mode.  If it is already in standby mode, 
EXEC proceeds to the thrusting, otherwise it will put 
IPS into the standby mode before proceeding.    

• EXEC demonstrates time-driven token durations.  For 
example, it terminates a thrust segment based on a 
timeout, rather than external confirmation.   

• EXEC demonstrates event-driven token durations, in 
which the picture tokens are not allowed to terminate 
until the picture has actually finished, turn tokens are 
completed only upon receipt of turn-complete messages 
from the ACS, and the SEP-THRUSTING token is only 



 

  

completed upon a message from MIR that IPS is indeed 
in the thrusting state.    

• EXEC demonstrates goal-oriented achievement (don’ t 
achieve things that are already true).  Because the 
planner is unable to determine how many thrust 
segments are necessary to achieve the total desired 
thrust, it inserts thrust tokens into the plan which may 
not need to be executed.  EXEC tracks how much thrust 
has been achieved, and only executes thrust tokens (and 
associated turns) for so long as thrust is actually 
necessary.    

• EXEC demonstrates the coordination of activity details 
across subsystems that are below the level of visibility 
of the planner.  There is a constraint that ACS be in 
thrust-vector-control (TVC) mode shortly after IPS has 
started thrusting.  When EXEC commands IPS into 
thrusting mode, it also sends the command to ACS to 
enter TVC mode based on its own lower-level domain 
knowledge.  Similarly, EXEC puts ACS back into 
Reaction Control System (RCS) control mode upon 
termination of a thrusting activity.  

Third, EXEC demonstrates the ability to maintain required 
properties in the face of failures.  In the thruster failure 
scenario, EXEC learns from an MIR state update that the 
current thruster mode is faulty. It invokes MIR with a 
recovery request and then executes MIR©s recommendation 
to change to a degraded thruster control mode.  

Fourth, EXEC demonstrates the ability to recognize plan 
failure, abort the plan, enter standby mode, and request and 
execute a replan.  This occurs in the MICAS failure scenario, 
in which EXEC learns from MIR that MICAS is stuck on and 
cannot be turned off. EXEC requests a recovery from MIR so 
that it can turn MICAS off, but since there is no way to fix 
this problem MIR informs  EXEC that is has no recovery.  
Since the plan requires MICAS to be off, EXEC aborts the 
plan, terminating a thrusting segment if necessary.  It then 
enters a degraded standby mode, in which it leaves MICAS 
on despite the usual desire to turn off all unnecessary 
devices in standby mode, and requests a plan for the planner.  
In its plan request, EXEC informs the planner that MICAS is 
stuck on.  Later, in executing the new plan, ground finds a 
way to fix MICAS and informs MIR of this fact.  When 
EXEC learns from MIR that MICAS can now be shut off, this 
new information does not cause EXEC to abandon the plan, 
since the planner did not require MICAS to be broken.  
However, the next time EXEC asks for a plan, it informs the 
planner about the restored health of MICAS, so that the 
planner can now plan to switch MICAS off when desired.  
EXEC also demonstrates the ability to terminate  plans based 
on an immediate command from the ground, in which case it 
enters whichever standby mode the command specifies. 

Implementation EXEC is implemented on top of Execution 
Support Language (ESL) [5], which in turn is implemented 
using multi-threaded Common LISP.  The internal EXEC 
code is designed in a modular, layered fashion so that 
individual modules can be designed and tested 
independently.  Individual device knowledge for RAX is 
implemented based on EXEC©s library of generic device 

management routines, to support addition of new devices 
and reuse of the software on future missions. 

More details about EXEC can be found in References [6, 7. 
and 8]. 

Diagnosis and Repair 

We refer to the Diagnosis and Repair engine of the Remote 
Agent as MIR, for Mode Identification and Reconfiguration, 
which emphasizes the model-based diagnosis and control 
flavor of the system. MIR eavesdrops on commands that are 
sent to the on-board hardware managers by the EXEC. As 
each command is executed, MIR receives observations from 
spacecraft sensors, abstracted by monitors in lower-level 
device managers for the Attitude Control Subsystem (ACS), 
Bus Controller, and so on.  MIR combines these commands 
and observations with declarative  models of the spacecraft’s 
components to determine the current state of the system and 
report it to the Exec. A very simple example is shown 
schematically in Figure 7. In the nominal case, MIR merely 
confirms that the commands had the expected effect on 
spacecraft state. In case of failure, MIR diagnoses the failure 
and the current state of the spacecraft and provides a 
recovery recommendation. A single set of models and 
algorithms are exploited for command confirmation, 
diagnosis and recovery. 
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spacecraft systems
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Figure 7. Information Flow in MIR 

The RAX mission scenario demonstrates the following MIR 
capabilities: state identification throughout the experiment, 
diagnosis of sensor failure F1, diagnosis and recovery 
recommendations for device failures F2-F4, and overriding 
of a MIR diagnosis via a ground command.  

F1 illustrates MIR©s ability to disambiguate between a sensor 
failure and failure of the device being sensed.  MIR 
combines power distribution models with the sensed  
nominal current draw and communication status of devices 
to conclude that the power switch must be on and that a 
switch sensor failure, though unlikely, has occurred.  



 

  

Failures F2-F4 are diagnosed in a similar fashion and 
include the possibility of recovery.  F2 focuses on repeated 
attempts to recover a camera switch until it is deemed 
permanently stuck.  F3 illustrates successful recovery of 
communication with a device by resetting its remote 
terminal (RT).  In F4, given only an attitude error and 
models of the spacecraft dynamics, MIR infers that one of a 
particular pair of thruster valves is stuck closed.  MIR is then 
able to recommend that no matter which one of the two 
valves is stuck, switching ACS control modes will mitigate 
the problem.  

Since we cannot depend on failures F1-F4 occurring during 
the experiment, failures will be simulated by injecting false 
monitor readings consistent with the failures. The RAX will 
be expected to take the appropriate corrective actions, 
though none are  necessary. Injecting simulated failures may 
seem senseless. However, in lieu of a guaranteed real 
failure, it provides greater confidence that the system is 
flight ready and will demonstrate that when the RA reacts to 
a failure the ground controllers will be able to observe, 
interpret, and, if necessary, override the actions it has taken. 
While simulations are necessary for demonstration, the RAX 
is fully responsible for responding to real failures within its 
limited scope occurring during the experiment. This raises 
an additional challenge regarding how the RAX will avoid 
conflicts with the flight software fault protection mechanism 
(FP), since both may be react to the same failure. Rather 
than negotiate a complex resolution strategy, the RAX was 
designed with a narrower notion of nominal operation than 
the FP (by  tuning monitors appropriately), thus avoiding the 
conflict  altogether. When the RAX is operational, it should 
always respond to and mitigate faults within its mandate 
before the FP monitors are triggered.  If the RAX fails to do 
so, the FP will terminate the RAX upon being triggered. 

The MIR component of the RA architecture, embodied in a 
system called Livingstone, consists of two parts: mode 
identification (MI) and mode reconfiguration (MR).  MI is 
responsible for identifying the current operating or failure 
mode of each component in the spacecraft.  Following a 
component failure, MR is responsible for suggesting 
reconfiguration actions that restore the spacecraft to a 
configuration that achieves all current goals as required by 
the planner and executive.  Livingstone can be viewed as a 
discrete model-based controller in which MI provides the 
sensing component and MR provides the actuation 
component.  MI’s mode inference allows the executive to 
reason about the state of the spacecraft in terms of 
component modes, rather than in terms of low level sensor 
values, while MR supports the run-time generation of novel 
reconfiguration actions.    

Livingstone uses algorithms adapted from model-based 
diagnosis [9, 10] to provide the above functions.  The key 
idea underlying model-based diagnosis is that a combination 
of component modes is a possible description of the current 
state of the spacecraft only if the set of models associated 
with these modes is consistent with the observed sensor 
values.  Following de Kleer and Williams [10], MI uses a 
conflict directed best-first search to find the most likely 

combination of component modes consistent with the 
observations.  Analogously, MR uses the same search to find 
the least-cost combination of commands that achieve the 
desired goals in the next state.  Furthermore, both MI and 
MR use the same system model to perform their function.  
The combination of a single search algorithm with a single 
model, and the process of exercising these through multiple 
uses, contributes significantly to the robustness of the 
complete system.  Note that this methodology is independent 
of the actual set of available sensors and commands.  
Furthermore, it does not require that all aspects of the 
spacecraft state are directly observable, providing an elegant 
solution to the problem of limited observability.  

The use of model-based diagnosis algorithms immediately 
provides Livingstone with a number of additional features.  
First, the search algorithms are sound and complete, 
providing a guarantee of coverage with respect to the 
models used.  Second, the model building methodology is 
modular, which simplifies model construction and 
maintenance, and supports reuse.  Third, the algorithms 
extend smoothly to handling multiple faults and recoveries 
that involve multiple commands.  Fourth, while the 
algorithms do not require explicit fault models for each 
component, they can easily exploit available fault models to 
find likely failures and possible recoveries.  

Livingstone extends the basic ideas of model-based 
diagnosis by modeling each component as a finite state 
machine, and the whole spacecraft as a set of concurrent, 
synchronous state machines.  Modeling the spacecraft as a 
concurrent machine allows Livingstone to effectively track 
concurrent state changes caused either by executive 
commands or component failures. An important feature is 
that the behavior of each component state or mode is 
captured using abstract, or qualitative, models [11, 12]. 
These models describe qualities of the spacecraft’s structure 
or behavior without the detail needed for precise numerical 
prediction, making abstract models much easier to acquire 
and verify than quantitative engineering models.  Examples 
of qualities captured are the power, data and hydraulic 
connectivity of spacecraft components and the directions in 
which each thruster provides torque.  While such models 
cannot quantify how the spacecraft would perform with a 
failed thruster for example, they can be used to infer which 
thrusters are failed given only the signs of the errors in 
spacecraft orientation.  Such inferences are  robust since 
small changes in the underlying parameters do not affect the 
abstract behavior of the spacecraft. In addition, abstract 
models can be reduced to a set of clauses in propositional 
logic. This form allows behavior prediction to take place via 
unit propagation, a restricted and very efficient inference 
procedure. 

 MIR’s abstract view of the spacecraft is supported by a set 
of fault protection monitors which classify spacecraft sensor 
output into discrete ranges (e.g. high, low nominal) or 
symptoms (e.g. excessive attitude error). One goal of the 
RAX was to make basic monitoring capability inexpensive 
so that the scope of monitoring is driven from a system 
engineering analysis instead of being constrained by 



 

  

software development concerns. To achieve this, monitors 
are specified as a dataflow schema of feature extraction and 
symptom detection operators for reliably detecting and 
discriminating between classes of sensor behavior. Second, 
the software architecture for sensor monitoring is described 
using domain-specific software templates from which code 
is generated. Finally, all symptom detection algorithms are 
specified as restricted Harel state transition diagrams 
reusable throughout the spacecraft. The goals of this 
methodology are to reuse symptom-detection algorithms, 
reduce the occurrence of errors through automation and 
streamline monitor design and test. 

Table 3 illustrates the classes of components modeled by 
MIR for the DS1 spacecraft.  For each we list the number of 
instances in the overall spacecraft model and the modes 
(states) the component can occupy. All told the MIR model 
represents fifty-seven components of twelve  different types, 
their behavior, and their interconnections.  For ease of 
modeling, MIR allows a set of components and a model 
describing their interconnection to be grouped into a module 
which can be treated as a unit.  Table 4 illustrates the 
modules created to model DS1. For each we list the number 
of instances in the overall spacecraft model and the 
components or other modules the module contains. 

Table 3. DS1 Hardware Modeled as Components in MIR 

Component Class # in Model Modes 

ion propulsion system 
(IPS) 

1 Standby, Startup, Steady State Thrusting, Shutdown, Beam Out, Controller Hung, 
Unknown 

remote terminal 6 Nominal, Resettable Failure, Power-cyclable Failure, Unknown 

attitude control 1 TVC, X for Y, Z for Y, X for Y Degraded, Z for Y Degraded, X for Y Failed, Z 
for Y Failed, TVC Failed, Unknown 

switch 12 On, Off, Popped On, Popped Off, Stuck On, Stuck Off, Unknown 

switch sensor 12 Nominal, Stuck On, Stuck Off, Unknown 

current sensor 3 Nominal (reported value = real value), Unknown (values unconstrained) 

thruster valve 8 Nominal, Stuck Closed, Unknown 

thruster 8 Nominal, Unknown 

propellant tank 1 Non-empty, Unknown (thruster hydrazine out  or otherwise  unavailable) 

bus controller 1 Nominal, Unknown 

vehicle dynamics 1 Nominal (This is a qualitative description of force and torque.)  

power bus 3 Nominal (Failure considered too fatal and remote to involve in diagnosis.) 

Table 4. DS1 Hardware Modeled as Modules in MIR 

Module # in Model Subcomponents  

power relay 12 1 switch, 1 switch sensor 

power distribution unit 1 12 relays, 3 power buses, 3 current sensors, 1 remote terminal 

generic RT subsystem 3 1 remote terminal (Models RT for devices MIR does not otherwise model) 

IPS system 1 1 IPS, 1 remote terminal 

thruster pallet 4 2 thrusters (X facing and Z facing) 

reaction control system 1 4 thruster pallets 

PASM subsystem 1 1 remote terminal  

It is important to note that the MIR models are not 
required to be explicit or complete with respect to the 
actual physical components. Often models do not 
explicitly represent the cause for a given behavior in terms 
of a component’s physical structure.  For example, there 

are numerous causes for a stuck switch: the driver has 
failed, excessive current has welded it shut, and so on.  If 
the observable behavior and recovery for all causes of a 
stuck switch are the same, MIR need not closely model the 
physical structure responsible for these fine distinctions.  
Models are always incomplete in that they have an explicit 



 

  

unknown failure mode.  Any component behavior which is 
inconsistent with all known nominal and failure modes is 
consistent with the unknown failure mode.  In this way, 
MIR can infer that a component has failed, though the 
failure was not foreseen or was simply left unmodeled 
because no recovery is possible.  

By modeling only to the level of detail required to make 
relevant distinctions in diagnosis (distinctions that 
prescribe different recoveries or different operation of the 
system) we can describe a system with qualitative 
"common-sense" models which are compact and quite 
easily written. Consider the stylized model fragment in 
Table 5 which describes some of the possible modes of a 
remote terminal. 

Table 5. M IR Model Fragment  for  Remote Terminal 

devi ce r emot e- t er mi nal  
     power _i nput  = r t _swi t ch- >power _out put   
     command_i nput  = bus_cont r ol l er - >command_out put  
mode nomi nal :      
 i f  (  power _i nput  == OFF)   comm_st at us = NO_COMMUNCATI ON   
 i f  (  power _i nput  == ON)    comm_st at us = COMMUNCATI ON 
mode r eset t abl e- f ai l ur e:  
 pr obabi l i t y  = LI KELY 
 comm_st at us = NO_COMMUNCATI ON 
        i f  ( command_i nput  == RESET)  next  mode = nomi nal  
mode power cycl abl e- f ai l ur e:  
 pr obabi l i t y  = LESS- LI KELY 
 comm_st at us = NO_COMMUNCATI ON 
        i f  ( power _i nput  == OFF)  next  mode = nomi nal  
mode unknown:  
 pr obabi l i t y  = UNLI KELY 
/ *  Not e t her e i s  no model ,  so any unmodel ed behavi or  i s  consi st ent  * /  

This single model describes how a remote terminal’s outputs 
behave nominally and during failure, what connections to 
other devices influence its behavior, and the expected effect 
of recovery actions such as RESET if the device is in the 
mode under consideration. If a remote terminal is not 
communicating, MIR will consider that it may no longer be 
nominal or it may not be receiving power input. When 
investigating the latter, MIR will generate a similar set of 
explanations for why a switch might fail to provide power 
given its model and connections. Additional technical details 
about Livingstone can be found in [13]. 

7. INTEGRATING RAX INTO THE FLIGHT SYSTEM 

Integrating RAX with flight software is challenging because 
RAX represents a significant departure from traditional flight 
software.  The differences are not only technical as 
described previously, but also practical and cultural.  From 
the view of flight software these differences may manifest 
themselves in a number of ways—from uneasiness within 
the flight software developers to an actual increased risk in 
the flight software product.  Fortunately, none of these 
differences nor their impacts are inherent limitations to RAX 
technology and thus, with sensitivity to the issues, RAX is 
successful as a high-level flight software control 
architecture.   

Perhaps the single largest practical difference that RAX 
presents arises from the fact the RAX is implemented in 
Common Lisp whereas previous missions, and also the 

realtime software with which RAX interacts, use lower-level 
languages like C. Many issues arise some of which are fact 
others of which are myth; however, the most significant 
issue is that interfaces between RAX and FSW might need to 
be specified and shared in either or both of two languages.  

The success of RAX required that these issues be addressed 
in a way that would allow traditional flight projects to be 
comfortable with RAX technology and also to mitigate the 
risk introduced by the new technology. The result is the 
“RAX Manager”  flight software component.  

The RAX Manager presents the RAX technology to the flight 
software with a traditional flight software interface.  Like 
hardware device managers, the implementation behind the 
interface is of no concern once the interface is correct, the 
functionality is in place and the required resources are 
allocated. 

The RAX Manager serves several different functions over 
the life cycle of the project.  

1) At design time, the RAX Manager specifies the interface 
agreements between RAX and the flight project.  The 
interfaces includes all of the following:     

• Telemetry and Logging    

• Ground-based Command Dictionaries    

• Computational Resources (CPU Fraction, Memory 
Requirements, etc.)    



 

  

• FSW messaging (function calling) interface    

• Flight Rules    

• Fault Protection responses    

• Timing within the Mission Plan.  

2) At implementation time, the RAX Manager shields the 
existence of CommonLisp in the RAX implementation from 
the flight software by presenting a “C”  interface externally.  
Producing that interface and performing any necessary 
conversions to the RAX implementation language are the full 
responsibility of the RAX developers.  The process was 
simplified dramatically by a RAX developed software 
package known as CLASH (“C and Lisp Abstract Syntax 
Harmony”).  CLASH defines a language for use in declaring 
a message passing interfaces and provides a preprocessor 
program (i.e. a compiler) to translate the declared interfaces 
to “C”  header files, “C” ' code files, and Lisp code. CLASH 
also runs inside RAX and hides all aspects of the inter-
module communication issues. Thus, there is one uniform 
interface for internal message passing among RAX 
components, external message passing between RAX and C 
modules, and even telemetry packet encoding. Simple 
compile-time declarations specify the interface and the 
location (internal or external) of the code implementing the 
corresponding interface.  

3) At FSW testing time, the RAX Manager decouples  RAX 
from the flight software and thus allows the launch-ready 
software to be tested in anticipation of the launch date and 
the RAX software to be tested in anticipation of the (later) 
experiment start date.  The RAX testing can thus proceed 
after the launch much as many ground-generated traditional 
sequences are validated post-launch.  The RAX Manager 
however, as a tiny subset of the RAX code, can be tested 
relatively early, on the flight software schedule.  

4) At runtime, the RAX Manager mediates the message 
passing between RAX and flight software.  There are two 
aspects to this.  This first is that the RAX manager must both 
initiate and terminate the RAX experiment: the initiation 
happens as commanded from the ground; the termination as 
a result of either a ground command or an unanticipated 
fault having found its way into the non-RAX fault-protection 
subsystem.  The second aspect is that the RAX Manager 
must discard any messages destined for RAX during those 
times when the RAX is not operational.  For  DS1, RAX is a 
relatively short-lived technology demonstration experiment, 
so the dominant runtime activity of the RAX Manager will 
be to simply discard any incoming messages.  Of course, for 
the time between initiation and termination the RAX 
Manager passes most messages between RAX and flight 
software.  

Through these four functions, the RAX Manager spans the 
entire flight project lifecycle and in so doing allows the RAX 
to address and mitigate the unique risks that arise in each 
phase.  

8. TESTING RAX 

Our approach to testing and validating the RAX not only 
exploits standard software testing practice, but also goes 
beyond it in a number of key areas.  The foundation of a 
reliable, high quality system is laid with the design and 
specification of the interfaces between the different 
subsystems.  To this end, we have formalized all RAX 
interfaces, both between RAX and the rest of the flight 
software and between the components of RAX, using 
CLASH.  The use of CLASH has essentially eliminated a 
whole class of essentially syntactic errors such as 
discrepancies in the index used to identify a switch in an 
array, out of range values, and inconsistent interpretations of 
interface structures.  Formalizing these interfaces has 
allowed us to focus our testing effort on finding and 
eliminating more subtle semantic errors.  

RAX System-level Testing 

Our principal approach to testing the RAX at the system 
level was the scenario-based testing of requirements.  
Testing of individual RAX modules used both scenario-
based testing methods and a variety of other methods 
discussed later in this section.  We started scenario-based 
testing by identifying the set of system-level requirements to 
be met by the RAX.  We then designed a set of test 
scenarios, ensuring that each requirement is adequately 
tested by one or more of these scenarios.  Scenario design 
started with the development of the 12 hour and 6 day 
scenarios to be demonstrated in flight.  These scenarios 
include nominal operation, planning and executing back-to-
back plans, and a variety of failure scenarios.  Additional 
scenarios were developed as variations on this basic set of 
scenarios. Variations were generated both for nominal 
execution (e.g., varying the number of OpNav image goals 
per window, varying the available power from the solar 
arrays, and varying the slew times for turns) and for failures 
(e.g., varying the location, time, and number of failures).  

An important aspect of the above approach is to have people 
intimately familiar with spacecraft and mission develop the 
scenario variations.  This ensures that the different scenarios 
capture all likely variations in the nominal scenarios, and all 
credible failures.  Furthermore, such people can identify 
situations that are likely to be challenging for the RAX, e.g., 
time or resource limited situations, critical sequences 
requiring precise timing, and failures that are hard to 
diagnose and recover from.  Mission and systems engineers 
are in the best position to develop scenario variations. 
However, in order to avoid excessively taxing the systems 
engineer’s time, our approach has been to have 
knowledgeable members of the RAX team develop the 
scenario variations, and have these variations be reviewed 
by DS-1 systems engineers.  The limited scope of the RAX 
makes this approach feasible.  

This basic approach to testing generalizes naturally to 
system-level testing of a Remote Agent being deployed for a 
complete mission.  In particular, each mission usually 
consists of a number of different phases characterized by 
nominal scenarios.  For example, the phases of the DS-1 



 

  

mission include launch, ballistic cruise, cruise under  ion 
thrusting, asteroid and comet flybys, and various validation 
experiments.  Nominal scenarios for each of these phases 
can be developed and tested.  Systems engineers can then 
use these nominal scenarios to develop scenario variations, 
including failure scenarios, to build confidence that the 
Remote Agent can effectively carry out all phases of the 
mission under a variety of different situations.  The focus 
provided by the nominal scenario of each phase helps keep 
the system-level testing of the Remote Agent manageable.  

Scenario-based testing of RAX is augmented with a variety 
of tools and processes to ensure effective testing.  
Specifically, we have developed a set of flight software and 
hardware simulators that support effective RAX testing prior 
to integration with the rest of the flight software.  We have 
also developed tools for simulated time “warping” , which 
allows the RAX and its associated simulators to skip over 
periods of time in which the RAX is idle.  This allows us to 
test scenarios lasting for days or weeks of simulated time in 
a few minutes or hours of real time.  Whenever possible, we 
have attempted to convert all tests into automatic regression 
tests requiring no manual intervention.  This allows us to 
automatically run a battery of tests overnight, to ensure that 
every major release of the RAX passes all regression tests.  
Finally, we have installed a formal bug tracking system 
using the GNU GNATS system and a process for its use. 
Whenever a code error is discovered, it is logged in 
GNATS.  Once the error is corrected, a regression test is 
created that fails before the code is corrected but passes with 
the corrected code.  This regression test is then added to the 
set of regression tests.  

In addition to the system-level testing described above, we 
also do extensive module feature tests on each of the RAX 
modules.  These are described below.  

Planner/scheduler module feature testing  

The main requirements on the planner is that it produce a 
valid plan for all valid plan requests from the Executive and 
all legal behaviors of the plan experts, and successfully 
update the mission profile in response to an profile update 
request. The latter requirement can be tested directly with 
automated scenario-based testing.  

The first requirement is somewhat harder to test. For any 
partial plan provided to the planner and any set of plan 
expert behaviors, the planner must either produce a valid 
plan before its computational resource bounds are exceeded 
(times out), or report that no plan can be generated within 
those bounds. For a plan to be valid, it must be consistent 
with the plan model. This requirement is tested by extensive 
scenario-based testing.  The plans generated in each scenario 
are tested for correctness against the plan model by an 
automated constraint checker, and manual spot checking of 
plans. The constraint checker converts the plan model into a 
set of logical constraints. Each plan is checked to ensure that 
all of the constraints are met. The constraint checker also 
performs a coverage analysis to ensure that every rule in the 
plan model has been exercised by an adequate number of 

plans. Manual spot checking is done by displaying the plan 
as a modified GANTT chart with a plan viewing tool.  

Even if a plan is valid with respect to the plan model, the 
plan model itself may be incorrect. The model may not 
express the knowledge that the model developer intended, or 
the developer may not have acquired the correct knowledge 
from the experts. The plan model must be verified with 
respect to the knowledge of appropriate experts. This is 
done by encoding the plan model into English specifications 
and confirming them with human experts. Another source of 
expert knowledge are the flight rules. These are English 
rules that state what actions can and cannot be performed on 
the spacecraft.  For example, “never fire the IPS engines 
while taking optical navigation images” . These rules can be 
converted into logical expressions and added to the set of 
constraints checked by the constraint checker. As a final test, 
a small representative set of plans are run through the 
executive to ensure that they execute correctly and that the 
spacecraft exhibits correct behavior.  

Executive module feature testing  

The modular, multi-level structure of the Executive (see 
Section 6) enables the Executive sub-modules to be tested 
independently and permits the Executive to be adapted to 
new missions with a minimal amount of change, primarily at 
the external devices level.  Given the limited scope of the 
RAX, testing the higher levels of the Executive (i.e., the 
external device level and the top level control) is relatively 
straightforward.  This gives us an opportunity to effectively 
test the lower levels of the Executive, providing a well-
tested foundation for future missions.  If it were necessary to 
redevelop and test the entire Executive for each mission, the 
high development cost could very well eliminate its 
selection on future missions.  

As previously discussed, we use automatic regression tests 
whenever possible to test the Executive.  Once such a test is 
started, manual intervention is not required and the test 
returns a pass or fail value. To facilitate this process, a 
simulator is used that was designed to check system-level 
properties and constraints while the Executive is running. 
For example, one constraint is that the MICAS camera is not 
to take a picture while the spacecraft is turning.  Given this 
constraint, the simulator generates an error that will cause a 
test to fail if the simulated spacecraft is turning when it 
receives a command from the Executive to take a picture.  

Unfortunately, not all testing can be done automatically. 
Determining if the Executive really did what it was supposed 
to do in certain situations often requires an expert to review 
the log generated by the Executive. This can be time 
consuming and errors may be overlooked. In order to 
address this problem, a visualization tool for validating 
Executive plan execution, called Planview, was developed at 
CMU by Simmons and Whelan [14]. Planview provides the 
user an overall view of all the executing timelines, highlights 
execution flaws, and allows the user to zoom in on an 
individual token showing its values and constraints.  



 

  

Finally, a formal analysis approach is used to check if the 
Executive code violates design specifications [15]. In this 
approach, we create a formal model that characterizes the 
abstract behavior of critical Executive constructs (for 
example, those dealing with resource management). We also 
formalize design requirements that should be enforced 
whenever the constructs are used (for example, aborted 
activities must always give up any resources that were 
allocated to them).  Then we run this abstract model through 
a formal model checker, which either proves that the formal 
model satisfies the design requirements or generates an 
example scenario where the requirement would be violated. 
Using this approach, errors in the Executive code were 
discovered that would have been very difficult to discover 
using the test methods described above. A major drawback 
of this approach is that it is time-consuming and has only 
been applied to a small part of the Executive. Decreasing the 
time and expertise required to perform this analysis is an 
ongoing research area.   

Diagnosis and Repair module feature testing  

MIR has four major categories of testable requirements: it 
must provide command confirmation to Exec, it must 
diagnose a set of failures, it must provide recoveries for 
those failures, and it must meet certain performance 
requirements. The majority of MIR testing is scenario based 
testing on a combination of simulators and real hardware.  A 
scenario consisting of a sequence of spacecraft commands 
and resulting monitor values (real or simulated) is processed 
by MIR.  At each point in the scenario, MIR’s model of the 
spacecraft©s state must agree with the spacecraft state 
predicted by the scenario commands.  During the scenario, a 
failure is injected into the spacecraft simulation or hardware 
testbed, causing a set of monitor values to be reported to 
MIR.  MIR’s diagnosis and recovery are then checked 
against the injected failure and performance metrics are 
taken.  

MIR testing scenarios derive from three sources.  The first is 
devious human testers.  We have developed tools to allow a 
user to easily write a scenario consisting of RAX command 
sequences, failure injections and, when not running on the 
hardware testbed, the expected monitor values. Human 
analysis of MIR’s weaknesses provides the most stressful but 
most expensive test scenarios for the system.  The second 
source is brute force automatic scenario generation.  The 
RAX MIR models are small enough that many classes of tests 
can be performed exhaustively given a set of reasonable 
limiting assumptions and a fast spacecraft simulator.  For 
example, given the simplicity of MIR’s models, each failure 
can be injected in each combination of modes the model can 
achieve and automatically checked for correct diagnosis and 
recovery.  The third source is informed automatic scenario 
generation.  MIR models the spacecraft by modeling each 
component as a finite state automaton. A large amount of 
work has been done in the verification community in 
verifying that a finite automata (here the MIR models) 
correctly models a physical or software system (here the 
spacecraft simulator or hardware).  In addition, a large 
amount of work has been done in the model-based 
diagnostics community in deriving tests that systematically 

sensitize each subsystem of an assembled system (here the 
simulator or hardware) and determine that diverge from their 
models. We are drawing on this work to build automatic test 
generators which will provide near-minimal length tests 
which will determine if a MIR model agrees with the 
hardware or simulator it models.  

9. FUTURE WORK 

A number of desirable Remote Agent features are planned 
for future Remote Agents that will not be part of the DS1 
RA.  These enhancements will further increase mission 
robustness,  refine diagnostic capabilities, and simplify the 
process of representing and integrating knowledge 
throughout the software. 

In our discussion of mission robustness, we discussed 
flexible planning and recovery capabilities.  These 
capabilities will not help in cases where some preventative 
or preparatory action needed to be taken in the past to 
enable recoveries in the current situation.  For example, if 
the primary engine breaks, the system may only be able to 
switch to the backup engine if it has been warmed up.  
Future Remote Agents will have the capability to anticipate 
such possible failures, or even opportunities, and to then 
build plans that provide the necessary resources so the 
system is prepared for many possible futures.   A related 
capability in this vein is for the executive to understand the 
priorities in the plan, so that it can abandon individual tasks 
or threads of activity without failing the entire plan.  This 
will enable high-priority activities to be completed even if 
low-priority activities fail. 

In our discussion of diagnosis, we pointed out that the MIR 
system makes new inferences every time an action is taken 
or a new observation is made.  In the event of failures, it will 
generate recoveries that may improve the situation.  
However, sometimes these actions taken during normal 
execution or even recovery will not present the right 
information to isolate the fault to an optimal level of detail.  
Our future work will develop methods for active testing, in 
which the system will conduct tests whose sole purpose is to 
help it improve its understanding of the state of the 
spacecraft.  Examples of this capability include turning the 
spacecraft to see if a gyro is measuring turn rates correctly, 
and turning selected devices on and off to detect shorts. 

In terms of knowledge engineering, we discussed how the 
various reasoning engines in the RA use different 
representations of knowledge.  In many ways this is a 
necessary and useful feature, as it allows the planner to 
reason at a more abstract level than the executive, and the 
diagnosis system to reason at a more detailed level.  While 
heterogeneous representations have a number of benefits, 
they also raise some difficulties.  Most significant of these 
are the possibility for models to diverge rather than 
converge, and the need to duplicate knowledge 
representation efforts. Ideally, we would like to head toward 
an increasingly unified representation of the spacecraft, but 
we intend to do so always generalizing from powerful 



 

  

models capable of handling the complexities of our real-
world domain. 

Many of these technology advances are currently targeted 
for future Deep Space Missions of the New Millennium 
Program.  Deep Space Three is a three spacecraft separated 
optical interferometer and Deep Space Four is a Comet 
nucleus Sample Return mission.  Both are slated for 
launches in the early years of the new millennium. 
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APPENDIX A 
Timelines and their respective tokens by Module (EXEC's perspective). 

  

MODULE TIMELINE TOKEN DESCRIPTION 

ACS Spacecraft Attitude constant_pointing_on_sun Point vector at Target, Solar Panels at Sun 

   transitional_pointing_on_sun  Turn vector to Target,  Solar Panels at Sun. 

   poke_primary_inertial_vector Small attitude change. 

 RCS_Health rcs_available  Maintain information on thruster status. 

 RCS_OK maintain_rcs Set and maintain desired RCS mode. 

MICAS 
(Camera) 

MICAS_Actions micas_take_op_nav_image Take a set of navigation pictures. 

 MICAS_Mode micas_off Keep MICAS off. 

   micas_ready Keep MICAS on. 

  micas_turning_on Turn MICAS off. 

  micas_turning_off  Turn MICAS on. 

 MICAS_Health micas_availability Ensure MICAS is available for use. 

Op-Nav Obs_Window obs_window_op_nav Wait for a specified duration. 

 Nav_Processing nav_plan_prep Send message to prepare navigation plan. 

PASM PASM Available  pasm_monitor Monitor the PASM switch. 

SEP SEP sep_standby Achieve and maintain IPS standby state. 

  sep_starting_up Achieve and maintain IPS start-up. 

  sep_thrusting Maintain a thrust level. 

   sep_shutting_down Stop thrusting and go to standby state. 

 SEP_Time Accum accumulated_thrust_time Monitor thrust time accumulated. 

 SEP_Schedule thrust_segment Specifies desired thrust level and vector. 

 SEP_Thrust Timer max_thrust_time Set a timer and stop thrusting if time reached. 

   thrust_timer_idle Thrust timer is off. 

Planner 

 

Planner_ Processing planner_plan_next_horizon 

script_next_horizon 

Request and get next plan from planner. 

Run the next scripted plan. 

General EXEC Activity exec_activity Execute a low-level sequence file passed as a 
parameter. 

 EXEC_Eval exec_eval_watcher Process a specified script. 

 

Additional tokens not listed above are used by the Planner as "placeholders" in the timelines. These placeholder tokens do not 
require EXEC to perform any activity.  



 

  

APPENDIX B 
Detailed Planner model for SEP 

 

Timelines Tokens Comments 

SEP_Schedule [Goal 
timeline] 

Idle_Segment 

Thrust_Segment 

SEP_Schedule is populated by NAV planning expert. Thrust_Segment 
defines time period with heading and thrust level. Several sequential 
segments constitute a schedule. Idle_Segments needed to pad the 
timeline to precisely position the thrust segments. 

SEP_Thrust_Timer 
[Goal timeline] 

Thrust_Timer_Idle 

Max_Thrust_Time 

Max_Thrust_Time is returned by the NAV planning expert. It specifies 
the total burn duration to be achieved in the current planning horizon. 

SEP_Time_Accum 
[Internal timeline] 

Accumulated_Thrust_Time Tracks the amount of time in the plan during which SEP is scheduled 
to thrust. Time accumulation occurs only during SEP_thrust tokens 
(see below). 

SEP [Executable 
timeline] 

SEP_Standby SEP is ready but power to the grid is turned off. Tracks the amount of 
time since SEP was thrusting. Greater the time since last thrusted, 
longer the duration of the SEP_Starting_Up token. Follows 
SEP_Shutting_Down. Followed by SEP_Starting_Up. Schedule 
appropriate power consumption retrieved from on-board power table. 

 

 

SEP_Starting_Up Prepares the Xenon tanks to allow thrusting. Duration of this token is 
dependent on when SEP was last thrusting and on previous thrust level. 
Requires attitude of spacecraft to be kept constant on requested thrust 
heading. Follows SEP_Standby. Followed by SEP_Thrusting. 
Schedules power consumption retrieved from on-board power table. 

 

 

SEP_Thrusting/FIRST SEP engine is actually thrusting immediately after having been started 
up. Must be temporally contained in a Thrust_Segment token (see 
above) from which it receives requested attitude and thrust level. 
Attitude must be kept constant to requested attitude throughout the 
token. Communicates its duration to an Accumulated_Thrust_Time 
token to track total accumulation. Follows SEP_Starting_up. Followed 
by either SEP_Thrusting/NEXT or SEP_Shutting_Down. 
Communicates requested heading to SEP_Starting_Up and 
SEP_Shutting_Down (if appropriate). Schedules power consumption 
retrieved from power table. 

 SEP_Thrusting/NEXT SEP engine is continuing to thrust (without having shut down) after 
change of attitude. Follows SEP_Thrusting/NEXT. Followed by 
SEP_Thrusting/NEXT or SEP_Shutting_Down. A short duration turn 
in TVC mode is requested to change attitude at the very beginning of 
the token. Communicate requested heading to SEP_Shutting_Down if 
appropriate. Other constraints identical to those of 
SEP_Thrusting/FIRST. Schedules power consumption retrieved from 
power table. 

 SEP_Shutting_Down 

 

Turns off  SEP. Requires spacecraft to be kept constant on requested 
thrust heading. Schedules power consumption from power table. 
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